Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces.

نویسندگان

  • E Evans
  • K Ritchie
  • R Merkel
چکیده

Adhesion and cytoskeletal structure are intimately related in biological cell function. Even with the vast amount of biological and biochemical data that exist, little is known at the molecular level about physical mechanisms involved in attachments between cells or about consequences of adhesion on the material structure. To expose physical actions at soft biological interfaces, we have combined an ultrasensitive transducer and reflection interference microscopy to image submicroscopic displacements of probe contact with a test surface under minuscule forces. The transducer is a cell-size membrane capsule pressurized by micropipette suction where displacement normal to the membrane under tension is proportional to the applied force. Pressure control of the tension tunes the sensitivity in operation over four orders of magnitude through a range of force from 0.01 pN up to the strength of covalent bonds (approximately 1000 pN)! As the surface probe, a microscopic bead is biochemically glued to the transducer with a densely-bound ligand that is indifferent to the test surface. Movements of the probe under applied force are resolved down to an accuracy of approximately 5 nm from the interference fringe pattern created by light reflected from the bead. With this arrangement, we show that local mechanical compliance of a cell surface can be measured at a displacement resolution set by structural fluctuations. When desired, a second ligand is bound sparsely to the probe for focal adhesion to specific receptors in the test surface. We demonstrate that monitoring fluctuations in probe position at low transducer stiffness enhances detection of molecular adhesion and activation of cytoskeletal structure. Subsequent loading of an attachment tests mechanical response of the receptor-substrate linkage throughout the force-driven process of detachment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic Force Microscopy Application in Biological Research: A Review Study

Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...

متن کامل

Structured water layers adjacent to biological membranes.

Water amid the restricted space of crowded biological macromolecules and at membrane interfaces is essential for cell function, though the structure and function of this "biological water" itself remains poorly defined. The force required to remove strongly bound water is referred to as the hydration force and due to its widespread importance, it has been studied in numerous systems. Here, by u...

متن کامل

Nano-to-micro scale dynamics of P-selectin detachment from leukocyte interfaces. III. Numerical simulation of tethering under flow.

Transient capture of cells or model microspheres from flow over substrates sparsely coated with adhesive ligands has provided significant insight into the unbinding kinetics of leukocyte:endothelium adhesion complexes under external force. Whenever a cell is stopped by a point attachment, the full hydrodynamic load is applied to the adhesion site within an exceptionally short time-less than the...

متن کامل

Dielectrophoretic force microscopy of aqueous interfaces.

A novel scanning probe microscopy technique has allowed dielectrophoretic force imaging with nanoscale spatial resolution. Dielectrophoresis (DEP) traditionally describes the mobility of polarizable particles in inhomogeneous alternating current (ac) electric fields. Integrating DEP with atomic force microscopy allows for noncontact imaging with the image contrast related to the local electric ...

متن کامل

Sensitivity Analysis of the Critical Conditions of AFM-Based Biomanipulation of Cylindrical Biological Particles in Various Biological Mediums by Means of the Sobol Method

The sensitivity analysis of atomic force microscope (AFM) based manipulation of gold spherical nanoparticles in air medium has been carried out in previous research works. In the AFM-based manipulations conducted in various biological liquid mediums, the new environmental parameters associated with these biological fluids also affect the dynamics of the manipulation process. Therefore in this r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 68 6  شماره 

صفحات  -

تاریخ انتشار 1995